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We numerically study a disordered version of the model for DNA denaturation transition consisting of two
interacting self-avoiding walks in three dimensions, which undergoes a first order transition in the homoge-
neous case. The two possible values �̂AT and �̂GC of the interactions between base pairs are taken as quenched
random variables distributed with equal probability along the chain. We measure quantities averaged over
disorder such as the energy density, the specific heat, and the probability distribution of the loop lengths. When
applying the scaling laws used in the homogeneous case we find that the transition seems to be smoother in the
presence of disorder, in agreement with general theoretical arguments, although we cannot rule out the possi-
bility of a first order transition.
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I. INTRODUCTION

The DNA denaturation transition is an old-standing open
problem �1� and one finds in the literature a large number of
different models that look in detail at various aspects �2–5�,
for instance reproducing the double-helix structure and the
corresponding denaturation behavior in the whole
temperature-torsion plane �4� or taking into account to dif-
ferent extents the role of the stacking energies �3,5�. From
the experimental point of view, one observes a multistep be-
havior in light absorption as a function of temperature which
suggests a sudden sharp opening of clusters of base pairs in
cooperatively melting regions. Therefore one expects that a
theoretical model, correctly reproducing the experimental be-
havior, should undergo a sharp transition and there has re-
cently been a lot of interest in models possibly displaying a
first order transition in the homogeneous case �4–11�.

Most programs, for example, MELTSIM �statistical
mechanical simulation of DNA melting� �12�, predict the ex-
perimentally observed melting curves using a model intro-
duced by Poland and Scheraga �2,11� that takes into account
the different entropic weights of opened loops and double
stranded segments. In the early studies of this model, ex-
cluded volume effects were completely neglected and a
smooth second order transition was predicted in two and
three dimensions. By solving the model including the en-
tropic weights of self-avoiding loops �13�, one finds a
sharper but still second order transition. In this way the self-
avoidance between bases within the same loop is taken into
account, but other mutual excluded volume effects are still
neglected.

In a previous work �7� we pointed out the importance of
excluded volume effects between different segments and
loops by introducing and numerically studying a model in-
spired by the former of Poland and Scheraga, consisting of
two interacting self-avoiding walks �SAWs� on a three-
dimensional �3D� lattice �SAW-DNA�.

In the limit of infinite chain length, the SAW-DNA model
undergoes a first order phase transition from the double
strand to the molten single-stranded chain state when varying
the temperature. The order parameter, which is the energy or
the density of binded base pairs, varies abruptly from 1 to 0.

It has been theoretically demonstrated that the transition
in the homogeneous model by Poland and Scheraga is of first
order when excluded volume effects are completely taken
into account, using the entropic weight of a self-avoiding
loop embedded in a self-avoiding chain �8,14�. This can be
obtained as a particular case of a more general result on
polymer networks �15�. It has also been analytically shown
that only considering the self-avoidance between the two dif-
ferent chains leads to a first order transition �10,16�.

Moreover, several numerical investigations �9,16–18� of
the homogeneous SAW-DNA model carefully measured the
probability distribution of the lengths of denatured loops P�l�
at the critical point in three dimensions and two dimensions.
These confirmed the theoretically expected power law P�l�
�1/ lc with exponent c�2 �in agreement with the transition
being first order� in both dimensions.

In the same SAW-DNA model, a first order unzipping
transition is predicted in the presence of an external force
that pulls apart the two DNA strands �14�. The behavior in
the temperature-force plane is numerically investigated in
Ref. �19�, and a phase diagram with a re-entrance region is
observed.

The version of the Poland-Scheraga model on which pro-
grams for predicting experimental denaturation curves are
based contains another main parameter, the cooperativity
factor �, which takes into account the activation barrier to
open a loop and has the effect of sharpening the transition
when considering finite size chains. It was shown �20� that
by using the value c�2.15 that characterizes P�l� in three
dimensions �instead of the usual value c�1.75, i.e., the ex-
ponent of an isolated self-avoiding loop�, and by slightly
correspondingly varying the cooperativity factor, one still
obtains a multistep melting behavior well in agreement with
experimental results. Nevertheless, the relevance of self-
avoidance for the experimental DNA denaturation is still an
open question �21,22�.
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In this work, we present numerical results on the denatur-
ation transition in the interacting SAW model in three dimen-
sions in the presence of quenched disorder �DSAW-DNA, or
disordered self-avoiding walk DNA�. The main aim of our
study is to attempt to clarify whether disorder is relevant,
therefore we introduce a model as simple as possible, since
we expect that slightly more realistic versions should behave
similarly. Studies in the literature on the effects of sequence
heterogeneities on other simple models for DNA denatur-
ation �23,24� neglect self-avoidance. Apart from its impor-
tance to experimental melting, we find that this is an intrigu-
ing statistical mechanics model in itself. On the one hand,
from general theoretical arguments �25–27�, one may expect
that the transition should become smoother in the presence of
disorder, although this is a peculiar kind of first order phase
transition, corresponding to a tricritical point in the fugacity-
temperature plane, and it is characterized both by an �=1
specific heat exponent and by a diverging correlation length
�7�. On the other hand, numerical results on P�l� at the criti-
cal temperature for a single disordered sequence in this
model �9� seem to show that the order of the transition does
not change, as also suggested from the topological consider-
ations explaining the sharp transition in the homogeneous
case.

We shall consider the simple case in which there are only
two possible base pair interactions, i.e., �̂AT which describes
the Adenine-Thymine couple and �̂GC for the Guanine-
Cytosine one, with �̂GC=2�̂AT. To be realistic, one should
choose closer values but, if disorder is relevant, they could
make it difficult to find numerical evidence for its effect,
being reasonable to expect that the disorder possibly changes
the order of the phase transition as soon as �̂AT� �̂GC. There-
fore we assumed to take �̂GC=2�̂AT as an interesting compro-
mise.

Moreover, we take the interactions to be independent
quenched random variables, identically distributed with
equal probability 1/2. Again, it should be noted that in more
realistic models the interaction energies are chosen to depend
also on the first neighbors �to take into account at least par-
tially the stacking energies� and that there are probably long-
range correlations in the base pair distribution, the ratio of
the GC to AT content being in any event a highly varying
quantity usually far from 1. We are neglecting both of these
effects, but we find that our simplified model does already
display an intriguingly rich behavior. It seems to be a useful
starting point for understanding the thermodynamical prop-
erties of this kind of system in the presence of disorder and
their relevance for describing experimental DNA denatur-
ation transitions.

II. MODEL AND OBSERVABLES

Let us define two N-step chains with the same origin on
the three-dimensional �3D� lattice, �1= ��0

1 , . . . ,�N
1 � and

�2= ��0
2 , . . . ,�N

2 �, with �i
k�Z3 and �0

1=�0
2= �0,0 ,0�.

The Boltzmann weight of a configuration ��1 ,�2� of our
system is

exp�− H
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	 = 
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1,�j

1��1 − ��i
2,�j

2�
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kBT
��i
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2	 , �1�

where the ��i� are independent quenched random variables,
identically distributed according to the bimodal probability

P��� = 1
2 ���� − �̂AT� + ��� − �̂GC�� . �2�

Thermodynamic properties of the system only depend on
the reduced variables �̂AT /kBT and R= �̂AT / �̂GC, the homoge-
neous case corresponding to R=1. Here we will take
�̂AT=1 and �̂GC=2, i.e., R=1/2. For the sake of clarity, we
also fix the Boltzmann constant to kB=1, measuring the tem-
perature in �̂AT units.

Let us introduce the different observables in the well stud-
ied homogeneous case. In the thermodynamical limit, the
transition is a tricritical point in the fugacity-temperature
�z-T� plane �7�, described by the crossover exponent 	. One
has

z − zc � �T − Tc�	. �3�

The order parameter characterizing the transition is the
density of closed base pairs, that behaves like the energy
density e=EN /N, where �7,28�

EN�T� � 
1/�T − Tc� T → Tc
+

N	 T = Tc

N�Tc − T�1/	−1 T → Tc
−.

�4�

Therefore the value 	=1 of the crossover exponent corre-
sponds to a first order transition, in which e goes discontinu-
ously �in the thermodynamical limit� from the zero value of
the high-temperature coiled phase to a finite value at Tc. We
stress again that it is a peculiar kind of first order transition
with a diverging correlation length and absence of surface
tension �the probability distribution of the energy is nearly
flat at the critical temperature�.

In the homogeneous case, both when self-avoidance is
completely taken into account �i.e., a first order transition
with 	=1 in d=3 and d=2� and when it is neglected �the
random walk model, which undergoes a second order transi-
tion with 	=1/2 in d=3 and a first order transition for d

5�, one finds that the finite size behavior of different quan-
tities is in agreement with given scaling laws. The total en-
ergy EN, its probability distribution P�EN�, and the maximum
of the specific heat cN

max behave as �7,28�

EN�T�/N	 = h̃��T − Tc�N	� , �5�

cmax�N� � N2	−1, �6�

PN�E�N	 = f̃�E/N	� at T = Tc, �7�

where f̃ and h̃ are scaling functions.
Moreover, one can get an independent evaluation of the

crossover exponent from the probability distribution of the
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loop lengths, that at Tc is in agreement with the law:

P�l� �
1

lc , �8�

where the exponent is related to 	 through the equation
	=min�1,c−1�. In the 3D SAW-DNA, one finds numeri-
cally �17,18� c=2.14�4�, in perfect agreement with the theo-
retical prediction �8� c�2.115, that implies a first order tran-
sition.

It is also interesting to note that P�l ,T� is more generally
expected to behave as �18�

P�l,T� �
exp�− l/��T��

lc , �9�

and that the correlation length ��T� should diverge when ap-
proaching the transition point with the power law:

��T� � ��T − Tc�−1 for c 
 2

�T − Tc�−1/�c−1� for 1 � c 
 2.
�10�

In the presence of the independent quenched random vari-
ables �= ��i�, one has to introduce quantities averaged over
disorder:

EN�T� = EN,��T� , �11�

cN,T = cN,��T� , �12�

PN�E� = PN,��E� , �13�

PN�l,T� = PN,��l,T� , �14�

where

O�T� =� d�P���O��T� , �15�

the numerical evaluation of these quantities being as usually
performed by averaging over a �large� number of different
disordered configurations �samples�. One should note that
the energy density e=−nAT�̂AT−nGC�̂GC is now quantitatively
different from �minus� the number of contact density
n=nAT+nGC, though it seems reasonable to expect that the
two quantities behave similarly.

In particular, we will look at the previously discussed
scaling laws �5�–�9� on the averaged energy, the averaged
specific heat maximum, the averaged probability distribution
of the energy, and the averaged probability distribution of the
loop lengths.

III. SIMULATIONS

We used the pruned-enriched Rosenbluth method �PERM�
�29�, with Markovian anticipation �30�, which is particularly
effective to simulate interacting polymers �31�. Moreover,
we used an ad hoc bias for the present model. When the
second chain has to perform a growth step and the end of the
first one is in a neighboring site, instead of doing a blind step
multiplying the weight by a factor e−�i/kBT if the new contact

is formed, we favor contacts choosing the step towards the
end of the first chain with an appropriately higher probability
and correcting the weight accordingly.

For each considered sequence we have performed 16 in-
dependent runs at different temperature values with 3–5 mil-
lion independent starts for each run. This turns out to gener-
ate enough statistics up to chain lengths N=800, since the
number of times that the system reaches the largest N value
in the simulation is of the order of the number of indepen-
dent starts.

We compute the behavior of the energy, of its probability
distribution and of its derivative �i.e., the specific heat� as a
function of temperature by reweighing the data at the chosen
temperatures of the set. The statistical errors on the values
for a given sequence are evaluated using the Jack-knife
method and we checked that they are definitely smaller than
the errors due to sample-to-sample fluctuations, which are
our estimate of the errors on averaged quantities.

Moreover, we checked thermalization and the correct
evaluation of the errors, particularly in the case of P�l ,T�, by
comparing results obtained at two different sets of tempera-
tures �see Table I� with two different methods. In the first
case two copies of the systems evolved simultaneously and
independently �the algorithm being accordingly modified�
and the computed quantities are practically evaluated from
two independent runs of 3 million starts each. In the second
set one copy performed 5 million independent starts. We ob-
tained perfectly compatible results from the two sets of simu-
lations.

We considered 128 different samples. We note that the
disorder configurations for different N values are not com-
pletely independent, nevertheless it seems reasonable to ex-
pect to observe the same scaling properties. Therefore we
find our statistics to be sufficient for giving a first insight
onto the behavior of various quantities and we also stress
that the crossover exponent can in principle be obtained from
data on PN�l� at Tc corresponding to a single N value. The
whole simulation took about 15 000 h �on COMPAQ SC270
and, to a lesser extent, on Forshungszentrum Jülich
CRAY-T3E�.

IV. RESULTS

We shall focus on results and compare them to what is
observed in the ordered case. First of all we find, at least for
some sequences �about one-third of the sequences for the
largest length�, the expected multistep behavior of the energy
density �see Fig. 1� and correspondingly several peaks of the
specific heat �see Fig. 2�, that behaves qualitatively as the

TABLE I. The considered temperatures for the two sets of simu-
lations performed for each sample. In the first case �a� two copies of
the system evolved independently and statistics were collected over
3 million starts, whereas in the second case �b� only one copy was
simulated and statistics were collected over 5 million starts.

Ti
a 0.8 0.95 1.08 1.125 1.15 1.175 1.2 1.3

Ti
b 0.875 1.015 1.05 1.1 1.13 1.16 1.19 1.25
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derivative of the density of closed base pairs with respect to
the temperature, i.e., the differential melting curve which is
usually experimentally measured.

Qualitatively speaking, the presence of multisteps be-
comes more probable with increasing N, whereas the tem-
perature region in which this behavior is present becomes
narrower. This is in agreement with the observation that at
the critical point the usual argument for proving the self-
averaging property of the densities of extensive quantities,

such as the energy density, fails since one cannot divide the
system in nearly independent subsystems due to the diverg-
ing correlation length. This is true also in the SAW-DNA
where, despite the first order transition of the homogeneous
case, one finds a diverging correlation length. On the consid-
ered N range we observe a strong sample-dependent behav-
ior, as in the case also of PN,��l� at T�Tc. It is therefore
possible that the results of the application of the scaling law
of the homogeneous case to averaged quantities have to be
taken with some care �33�.

In Fig. 3 we plot our data on the disorder averaged spe-
cific heat for the considered chain lengths. This shows that,
also in the presence of disorder, the maximum of the specific
heat increases as a function of the chain length. Nevertheless,
as discussed in detail in the following, it seems to behave as
N2	−1 with exponent smaller than 1.

Then in Fig. 4 we present our data on the disorder aver-
aged energy density. We note that curves corresponding to
different N values cross roughly at the same temperature Tc
�1.15 within the errors �see the inset�, therefore suggesting
a transition still of first order. Actually this should mean a
jump of the energy density in the thermodynamical limit,

FIG. 1. �Color online� The energy density eN,��T� for two par-
ticular sequences with N=800, one of which displays a two-step
behavior. Note the plateau at eN,��T�=0 in the coiled phase. The
plotted region is the one around Tc in which the energy varies more
rapidly and there are evident differences in the behavior from
sample to sample. At lower temperatures quantities are nearly
sample-independent and the energy density slowly decreases to-
wards the fully double-stranded limit emin,�=−1.5.

FIG. 2. �Color online� The specific heat cN,��T� for two different
disordered sequences with N=800 �the same sequences as in previ-
ous figure�. Also in this case there is qualitative agreement with the
experimentally observed behavior in the differential melting curves,
though the model should be improved in order of really comparing.
For instance, particularly for short sequences, the plateau one gets
in the coiled phase is usually higher than the low temperature one
because of residual stacking energies which is an effect completely
neglected here.

FIG. 3. �Color online� The disorder averaged specific heat for
the considered chain lengths.

FIG. 4. �Color online� The disorder averaged energy density, for
the considered chain lengths.
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from zero for T�Tc to the finite value e�Tc��−0.5. Never-
theless, as displayed in Fig. 5�a�, the expected scaling law
Eq. �5�, which is well verified in the homogeneous case at
least in the region T�Tc, is here definitely not fulfilled with
	=1. When fitting the data according to this scaling law �see
Fig. 5�b�� one finds a slightly higher critical temperature
value Tc=1.155 and a crossover exponent 	=0.8475.

Since we were looking for a second order transition, i.e.,
for an exponent 	�1, we required in the fit that data obey
the scaling law on both sides of the critical temperature �for
the random walk model in three dimensions �7�, where the
transition is of second order, a good scaling was observed on
both sides of Tc�. In any event we stress that by fitting data
only in the high-temperature region T�Tc one would get a
definitely lower value of the crossover exponent 	�0.6.

We note that the data roughly agree with the law but there
are still corrections to scaling. We also checked that the dis-
order averaged number of contact density displays a similar
behavior �i.e., it follows the same scaling law�.

In Fig. 6 we present our data on the specific heat maxi-
mum, that would agree well with an exponent 	�0.85 �our
fit to the expected behavior Eq. �6� gives 	=0.815�. How-

ever, the data would also be compatible �within the errors�
with 	=1, if we were to neglect the smallest chain length
N=100.

We tried, following Ref. �33�, to analyze the data on the
energy densities and the specific heats in terms of a reduced
sample dependent temperature T−Tc

i �N�, where Tc
i �N� is de-

fined as the temperature for which the specific heat for
sample i and chain length N reaches its maximum. This
analysis leads to the same conclusion as the conventional
one, that the disorder averaged energy density does not scale
with a 	=1 crossover exponent and the disorder averaged
specific heat maximum seems to diverge more slowly than
linearly with N when taking into account all the considered
chain lengths. We computed the average distance between
the sample dependent critical temperatures
dTc�N�= �1/N�N−1���i�j �Tc

i �N�−Tc
j�N�� �N=128 being the

number of samples� which seems to go to zero for increasing
chain lengths more slowly than 1/N, again suggesting a sec-
ond order transition.

We looked at the probability distribution of the energy
density at the critical temperature T=1.15�Tc �see Fig.
7�a��. In the homogeneous case it displays a large and flat
scaling region extending to a value e* which does not depend
on N, with deviations from the scaling law Eq. �7� for e
�e* �7�. Here we find that the scaling law with 	=1 is not
well fulfilled. For the sake of comparison we also plot
�in Fig. 7�b�� the behavior of our data at the slightly higher
temperature value T=1.155 with a crossover exponent 	
=0.8475.

Let us now consider data on the disorder averaged prob-
ability distribution of the loop lengths PN�l� which are plot-
ted in Fig. 8 at T=1.15�Tc. We checked that the behavior is
very similar when temperature slightly varies. Again, a fit to
the expected power law �1/ lc of the whole data set suggests
an exponent c�2, i.e., a second order transition. Neverthe-
less, a closer inspection of the behavior makes evident some
curvature and when restricting the fit to the l range 1� l
�N �which is also the region in that the hypothesis PN�l�
�1/ lc should be better verified� we find larger c values and
the data for N=100 alone are definitely consistent with a first
order transition.

FIG. 5. �Color online� On the top we plot the disorder averaged
energy density for the considered chain lengths as a function of
N�T−Tc� with Tc=1.15. On the bottom we present the scaling law
with 	=0.8475 and Tc=1.155.

FIG. 6. �Color online� The behavior of the specific heat maxi-
mum compared with a fit to the exponent 	=0.815 and to 	=1.
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To perform a more quantitative analysis, in Fig. 9 we
consider �34� the momenta �lp�, which are expected to be-
have as N�p. In particular the combination ln �lp� / ln N is ex-
pected to be linear in p on a large range of p values and one
should be able to evaluate c−1 by extrapolating the linear
behavior down to p=0. We effectively observe a quite linear
behavior for p�1 but by extrapolating we get the definitely
different values c=2.07 for N=100 and c=1.91 for N=800.
On the one hand data for the longest chain length should be
the most meaningful, therefore confirming a second order
transition; on the other hand it should be stressed that PN,��l�
is a difficult quantity to measure and we cannot rule out the
possibility that our statistics are inadequate for correctly
evaluating it for the largest considered chain lengths.

Nevertheless, the observed curvature on the ln PN�l ,Tc� vs
ln�l� behavior and the corresponding strong N dependence in
the obtained estimations could be related to finite size ef-
fects. One should note in particular that in the case of a
second order transition the finite size corrections to the criti-
cal temperature �i.e., Tc�N�−Tc���� are expected to approach

zero in the thermodynamical limit more slowly than 1/N.
Therefore it could be misleading to fit the data according to
the power law P�l��1/ lc which is expected to be fulfilled
only exactly at Tc. Moreover, we have a large uncertainty on
the evaluation of Tc itself. For these reasons, in order to gain
further insight into the behavior of the system, we also at-
tempt to compare the measures at the different temperatures
considered with the more general law
PN�l ,T��exp�−l /�N�T�� / lc. This should allow us to take par-
tially into account finite size effects, by introducing a pos-
sible finite correlations length �N�T� which measures both the
distance from the effective Tc�N� and the finite size correc-
tions to the thermodynamical limit correlation length.

Interestingly enough, in the temperature region T�Tc
�1.15 one gets 1 /�N�T� compatible with zero within the
errors �it can be also negative, though small� apart from the
shortest chain lengths. In particular, data for N=100 are con-

FIG. 8. �Color online� The disorder averaged probability distri-
bution of the loop lengths at T=1.15�Tc for N=100 and N=800,
compared to the behavior a / lc with c=2.

FIG. 9. �Color online� Data on �p=ln��lp�� / ln N, from data on
P�l� at T=1.15�Tc, plotted as function of p. The two fits give c
=2.07 and c=1.91, respectively. We note that the linear behavior is
no more satisfied for p�6 in data corresponding to the largest N
values.

FIG. 7. �Color online� On the top we plot the disorder averaged
probability distribution of the energy density at T=1.15�Tc, PN�e�
as a function of −e, which corresponds to the particular case of the
corresponding scaling law with 	=1, since PN�e�=NPN�E /N�. On
the bottom we present the scaling law, PN�E�N	, as a function of
−E /N	, at Tc=1.155 with 	=0.8475.
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sistent with a detectably finite correlation length for all the
temperatures studied. The corresponding evaluation of the
exponent c is in this case smaller than that found when the
effect of the finite correlation length is neglected, giving usu-
ally c�2.

In detail, we performed three-parameter fits of data on
PN�l ,T� at different temperatures by neglecting both the very
first and the last l values. In particular the dependence on the
number of neglected initial points has been studied by re-
stricting the range to l�5 and to l�2. Whenever the fit
gives a 1/�N�T��0 unphysical value, the corresponding c is
estimated from the power law behavior, i.e., by imposing
1/�N�T�=0. Moreover, we also considered the fits to the
power law in all the cases in which an inverse correlation
length compatible with zero turns out, again by looking only
at the l�5 range or at the whole l�2 one. Finally, we per-
formed linear extrapolations to the 1/N→0 limit.

Despite the introduction of the correlation length, the
evaluations of c seem generally to depend on temperature
and on the number of initial points included in the fit, and its
extrapolations turn out to be compatible with a first order
transition. Nevertheless, the values obtained in the region T
�Tc, where the largest sizes can be fitted to the power law
and which are therefore expected to be the most significant
results, would definitively suggest a second order transition,
characterized by a quite large crossover exponent 	�0.9. It
should be noted that in this region one gets well compatible
estimations from the different methods we used. In conclu-
sion, the analysis is consistent with the initial qualitative ob-
servation on the P�l� behavior at T�Tc that the transition
seems to be of second order when considering the longest
chain lengths most meaningful.

It would be interesting to perform on PN�l ,T� an analysis
by introducing rescaled temperature but we unfortunately are
not able to reweigh data at different T values in this case. To
study whether this would not affect the qualitative behavior,
thereby confirming a second order transition, is left for future
investigation.

Finally, we present in Fig. 10 data on the inverse correla-
tion length, 1 /��T� as evaluated by extrapolating linearly to
the limit 1 /N→0 values for the different chain lengths �here
we only consider the temperature range where it is definitely
larger than zero�. The obtained qualitative behavior suggests
again a second order transition, since 1/��T� seems to go to
zero more rapidly than �Tc−T�. A fit to the expected power
law behavior 1 /��T�� �Tc−T�1/�c−1�would give c�1.7. We
checked �on the N=800 data� that the qualitative behavior of
��T� does not change if we were to fit the data on PN�l ,T� in
the low temperature region according to the law �9� by im-
posing c=2 �or c=2.1�.

As a last remark, we stress that our statistics are unfortu-
nately inadequate for performing a more quantitative analy-
sis, particularly on ��T�. Actually, because of the algorithm
we are using, data on P�l ,T� in the low temperature range
are reliable up to smaller l values rather than in the region
T�Tc �i.e., very long bubbles are usually not well sampled
at low temperatures due to their negligible probability�. Once
again, we are led to the conclusion that the most significant
results on P�l ,T� should be those obtained in the T�Tc re-

gion for the largest chain lengths, which is our best numeri-
cal evidence for the transition being of second order.

We have some preliminary numerical results on our
model with different values of R, where the crossing of the
energy densities becomes less evident the more different the
energies �AT and �GC are. The transition seems to be charac-
terized by a varying crossover exponent which becomes
smaller as R diminishes. In particular, by applying the scal-
ing law to the disorder averaged energy densities we get 	
�0.8 from data for �AT=1 and �GC=4, and 	�0.7 from data
for �AT=0 and �GC=1. The P�l� behavior at the critical tem-
perature would suggest similar values too, though also in
these cases one gets different results by restricting the range
to the region 1� l�N. Here we only would like to mention
that an alternative explanation for these results is that one is
always looking at a first order transition but that the scaling
laws of the homogeneous case are not well fulfilled anymore
�33�. More extensive simulations would be necessary in or-
der to clarify this issue.

V. CONCLUSIONS

Summarizing, we studied a disordered model for DNA
denaturation transition consisting of two interacting self-
avoiding chains in which we chose the two possible values
of the interaction energy to be �GC=2�AT, distributed with
equal probability. Despite of the extensive numerical simula-
tions performed, it is difficult to definitively discriminate be-
tween a first order �as in the homogeneous case� and a
smoother second order transition.

FIG. 10. �Color online� The results on the inverse correlation
length 1/��T� behavior of the fits of data on PN�l ,T� as obtained by
different methods: �a� For each N and temperature the values are
obtained from a three-parameter fit to the law �exp�−l /�N�T�� / lc

neglecting only the very first �in particular the first two� and the last
l values. �b� The same as in �a� but restricting the considered range
to l�5. In both cases values for different N are linearly extrapo-
lated to 1/N→0 in order to give the plotted estimations. We stress
that because of the fits involved the given errors are to be consid-
ered only very indicative, our uncertainty on the estimations being
better expressed by the fluctuations between values obtained with
the different methods.
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As a matter of fact, we find that the energy densities as a
function of temperature for the different chain lengths con-
sidered roughly cross within the errors therefore suggesting a
discontinuity of this quantity in the thermodynamical limit.
However, the application of the scaling laws that are verified
in the ordered case indicate a smoother second order transi-
tion with strong corrections to scaling.

When looking at the averaged probability distribution of
the loop lengths, one gets again a crossover exponent 	 defi-
nitely smaller than one from the data corresponding to the
largest considered chain lengths. Nevertheless, data display
some curvature also at T�Tc and higher values of the expo-
nent are obtained when restricting the range to 1� l�N. A
momenta analysis of this probability distribution gives c
�2 �i.e., 	�1� only for the largest lengths. For a better
understanding of this issue, we also attempted to perform a
more general analysis on the whole considered temperature
range by introducing a finite correlation length, with the aim
of partially taking into account finite size effects. Results in
the region T�Tc point towards a c�2 value and are our best
numerical evidence of a second order transition. Anyway, it
should be stressed that we get a quite large c�1.9 and we
cannot rule out the possibility of a sharper �first order� tran-
sition.

During completion of this work, results appeared on the
homogeneous Poland-Scheraga model �35� that seem to
show how this model with the appropriate parameter values
and the lattice SAW-DNA model are equivalent, even though
the lattice model displays strong finite size corrections to
scaling. Therefore a different kind of analysis on the disor-
dered Poland-Scheraga model could help in better under-
standing the situation. To this extent, the recent study by
Garel and Monthus �36� points towards the direction of a
first order transition also in the presence of disorder, though

the usual scaling laws seem to be not fulfilled. On the other
hand, a very recent theoretical work �37� predicts that disor-
der should be relevant in this kind of model and that one
should find a second order �or smoother� transition. In a nut-
shell, the situation appears far from being clarified and these
simple models for DNA denaturation transition seem to de-
serve a careful analysis from the statistical mechanics point
of view.

Finally, it should be pointed out that even if the transition
is smoother in the presence of disorder the obtained value
c�1.9 for the considered interaction energies is definitely
higher than the value c=1.762 76 �32� which one gets in the
homogeneous case when self-avoidance between different
loops and segments is neglected. In the hypothesis that c
depends on the energy values one would expect, in the more
realistic case of �GC closer to �AT, a higher value of c possi-
bly indistinguishable from the case of a first order transition
with c�2. In this sense the model seems relevant for the
experimentally observed DNA denaturation, and which value
of c one should use in predictions based on Poland-Scheraga
models as realistic as possible seems to be an open question.
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